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• Entry, descent, and landing (EDL) is the phase of flight defined from atmospheric interface to touchdown on 

a planetary surface

• Future planetary missions strive to deliver larger payloads at higher altitudes with increased landing 

accuracy; currently driven by available EDL technologies 

– Nearing the limit with current technologies for Mars Science Laboratory (MSL); currently scheduled to 

launch Fall 2011

– Stringent requirement for any manned missions; for Mars: two order of magnitude increase in landed 

payload mass, four order of magnitude increase in landing accuracy

• Current EDL systems are based on Viking-era technologies (1970’s NASA Mars program) with minor 

modifications

– Aeroshell geometry, thermal protection system (TPS) material, parachute design

• Development of newer, more robust EDL technologies rely on improving Earth-based modeling capabilities

– Large uncertainties in computational simulations

– Inadequate ground-based testing facilities 

– Sparse amount of flight data available 



MEDLI Overview
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• MEDLI High-Level Objectives:

– Provide more than an order of magnitude more data than all previous Mars entry missions combined

– Answer fundamental questions relating to leeside turbulent heating levels, forebody flow transition, and 

TPS material response in a carbon dioxide atmosphere

– Permit a more accurate post-flight trajectory reconstruction

– Allow separation of aerodynamic and atmospheric uncertainties in the hypersonic and supersonic flow 

regimes.

• The MSL Entry, Descent, and Landing 

Instrumentation (MEDLI) is a suite of sensors 

installed on the forebody heatshield of the MSL 

entry vehicle

– Sensor locations determined by science team

– Some similar components to previous entry 

instrumentation packages

• MEDLI operational from ten minutes prior to 

atmospheric interface to heatshield separation

• MEDLI proposed to address some of the 

challenges associated with development of newer, 

more robust EDL technologies



MEDLI Subsystems
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• MEDLI Integrated Sensor Plugs (MISP)

– A plug consists of a 1.4” diameter heatshield 

TPS core with embedded thermocouples and 

recession sensors

– Each plug consists of one (1) recession sensor 

and four (4) thermocouple sensors

– Supports aerothermodynamic and TPS science 

objectives

• Mars Entry Atmospheric Data System (MEADS)

– Series of through-holes, or ports, in the TPS 

that connect via tubing to pressure transducers

– Based on Shuttle Entry Air Data System 

(SEADS)

– Supports aerodynamic and atmospheric 

science objectives

• Sensor Support Electronics (SSE)

– Electronics box that conditions sensor signals 

and provides power to MISP and MEADS

MISP MEADS Pressure 

Transducer

SSE



Pressure Measurement System
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• Components of the pressure measurement 

system: seven (7) MEADS pressure 

transducers, SSE

• Pressure Measurement System Science 

Objectives:

– Estimate flight parameters from measured 

pressures

– Improve atmospheric models (density) for 

Earth-based computational simulations

• Defendable uncertainty in estimated flight 

parameters rely on adequate measurement 

system characterization over extreme 

environmental conditions

• Pressure Measurement System Characterization Challenges:

– Pressure varies across port locations on the heatshield; temperatures vary between the SSE and 

pressure transducer locations; pressure and temperature vary with time during reentry

– Possible Operational Ranges: 0.00 to 5.00 psia (Pressure), -120 to -60 deg. C (Transducer 

Temperature), -20 to 55 deg. C (SSE Temperature)

– Large temperature ranges represent the uncertainty in the start temperatures (i.e. transducer 

temperature can start anywhere in the range of -120 to -60 deg. C with an expected change of 10 deg. 

C over the entry)   



Pressure Measurement System 
Characterization - I
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• Objective: Adequate measurement system characterization (calibration) over extreme environments; 

deliverables include

– Mathematical model to estimate flight pressures

– Uncertainty estimates throughout the flight trajectory

• Total measurement uncertainty goal of 1 percent of reading through the range of 0.12 to 5.00 psia

• Utilized response surface techniques to provide a robust, defendable system characterization

– RSM-based calibrations have been performed at NASA LaRC since 1999 (force balance applications)

– Nontraditional use of RSM: not interested in system optimization; deliverables are measurement system 

knowledge (mathematical model and uncertainties)

– Certain experimental design properties are important to providing a robust mathematical model that can 

be applied confidently to flight data

• Experimental Design Development

– Mathematical model based on second-order Taylor series expansion of three factors

– Replication included to estimate the pure experimental error in the measurement system (one metric for 

comparison of transducers)

– Prediction variance properties of the design translate to total measurement uncertainty of the system



Pressure Measurement System 
Characterization - II
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• Impact of Restricted Randomization

– Since temperature is held constant while a pressure sequence is executed, there is a degree of 

correlation among the points; however different temperature combinations are independent

– Require some advanced technique to perform the analysis which accounts for the restricted 

randomization

• Restricted maximum likelihood (REML)

• Statistical calibration problem: develop forward regression model and invert to solve for estimated 

parameter

• NASA LaRC 6’ x 6’ Thermal Vacuum Facility

– Provides the necessary testing conditions to 

characterize the pressure measurement system 

based on possible environmental conditions

– Limitations of the Facility

• The pressure measure system can stabilize 

with temperature within 2 hours and with 

pressure within 1 minute

• Restrict the randomization of temperature to 

improve the experimental efficiency (split-plot)

- Temperature combination is set and held 

constant while the pressure levels are 

varied



Pressure Measurement System 
Characterization Summary
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Methodology and Tools Overview:

1. DOE/RSM:

– Development of the experimental design to support objectives

– Accommodate practical restrictions (restricted randomization)

– Simulated entry trajectories: best attempt to simulate expected flight conditions on the ground

2. Transducer Repeatability:

– Pure error estimation

3. Forward Regression Modeling:

– REML: variance component estimation and model reduction

4. Model Inversion for Flight Data Reduction:

– Estimate pressure from signal response and temperatures

– Two (2) methods available: direct or iterative

5. Inverse Prediction Uncertainty:

– Delta method used to calculate the variance in the estimated pressure

6. In-flight Zero Algorithm:

– Exploit known, physical information prior to entry (hard vacuum in space)



Post-Flight Trajectory Reconstruction
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• Three (3) quasi-independent methods to reconstruct the entry trajectory

– Ideally all the reconstructed trajectories match

– Historically discrepancies have existed in the reconstructed trajectories which have not been systematically 

resolved 

• System-level approach to quantifying uncertainties has not been emphasized for previous reconstruction efforts

• Emphasize more strategic approach to help meet objectives: Monte Carlo vs. Designed Experiment

Pressures Rates

Pressure-based 

Reconstruction

Aerodynamic-based

Reconstruction

Accelerations Quaternion

Simulation-based

Reconstruction

Measured Flight Data

Pressures Aerodynamics

Preflight Simulation

Coordinate Transformations



Reconstruction Reconciliation
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• Research effort with Georgia Tech (Jason Corman and Brian German) under the funding auspices of the 

NASA Graduate Student Research Program (GSRP)

• Focused on the development of a general approach to determine the causes in differences between various 

trajectory reconstruction methods

– Reconstructed trajectories do not need to match exactly

– Uncertainty intervals of the trajectories to overlap

• Developed a simplified, 2 degree-of-freedom (DOF) simulation tool to study trends and sensitivities

– Identified and tested techniques to help mitigate discrepancies in basic reconstruction methods 

– Apply the approach to the actual 6 DOF simulation tool used during reconstruction



Pressure-based Trajectory Reconstruction
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• Combines actual flight pressure data and preflight simulation data to estimate vehicle orientation, 

freestream dynamic pressure, and Mach number 

• Preflight simulation data based on computational fluid dynamics (CFD) with limited anchoring to 

experimental data

– Experimental facilities available are not relevant to expected flight environment

– Higher confidence in computational results in certain regions of the trajectory

• Uncertainty requirements for estimated flight parameters (angle of attack, angle of sideslip, Mach number, 

dynamic pressure) specified at project’s inception 

• Uncertainty requirements were determined assuming perfect (no uncertainty) preflight simulation data

– Investment of resources focused on minimizing the uncertainty in the pressure measurement 

uncertainty

• Total uncertainty is the root sum squared (RSS) of the pressure measurement system uncertainty and the 

preflight simulation uncertainty

– Pressure Measurement System Uncertainty ~ ± 0.25 percent (actual)

– Preflight Simulation Uncertainty ~ ± 5 percent



Summary
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• Development of more robust EDL technologies rely on capabilities of Earth-based modeling capabilities

• Contributions to MEDLI:

– Pressure Measurement System Characterization

• Mathematical modeling of the pressure measurement system

• Defendable uncertainty quantification of the system

– System-level Approach to Preflight Trajectory Reconstruction

• Subsystem uncertainty quantification

• General approach to reconstruction reconciliation 

• Lessons Learned from MEDLI:

– Traceable objectives to support future missions

• Development of technologies

• Decision-making process

– Investment of resources to support objectives

• Division between computational and physical experiments

– Focus on knowledge and learning rather than what needs to be done or built

• De-emphasizes data quantity



References

1305 May 2011 NASA Statistical Engineering Symposium

• Some Textbooks

– Draper, N.F. and Smith, H. (1998), Applied Regression Analysis, John Wiley & Sons

– Myers, R.H. and Montgomery, D.C. (2002), Response Surface Methodology, (2nd Ed.) John Wiley & 

Sons.

– NIST Engineering Statistics Handbook, Measurement Process Characterization, 

http://www.itl.nist.gov/div898/handbook/mpc/mpc.htm

• Some Articles, annotated

– Braun, R.D. and Manning (2006), “Mars Exploration Entry, Descent, and Landing Challenges,”  

Journal of Spacecraft and Rockets, 44, pp. 310-323, March 2007.

– Gazarik et al. (2008), “Overview of the MEDLI Project,” 2008 IEEE Aerospace Conference, Big Sky, 

MT.

– Kowalski, S.M., Parker, P.A., and Vining, G.G. (2007), “Tutorial on Split-Plot Experiments,” Quality 

Engineering, 19, pp. 1-15.

– Parker et al. (2010), “The Prediction Properties of Classical and Inverse Regression for the Simple 

Linear Calibration Problem,” Journal of Quality Technology, 42, pp. 1-16.

– Parker, P.A. and DeLoach, R. (2001), “Response Surface Methods for Force Balance Calibration 

Modeling,” IEEE 19th International Congress on Instrumentation in Aerospace Simulation Facilities, 

Cleveland, Ohio.

http://www.itl.nist.gov/div898/handbook/mpc/mpc.htm

